Pushing the Envelope of Residual Oil Measurement: A Field Case Study of a New Class of Inter-Well Chemical Tracers
Modiu Sanni; Mohammed Al-Abbad; Sunil Kokal; Øyvind Dugstad; Sven Hartvig; Olaf Huseby
Paper presented at the SPE Annual Technical Conference and Exhibition, Dubai, UAE, September 2016.
Paper Number: SPE-181324-MS
https://doi.org/10.2118/181324-MS
Published: September 26 2016
The success of any improved oil recovery (IOR) project is largely dependent on how much oil is remaining to be mobilized within the targeted area of the partially depleted or mature reservoir. Partitioning tracers are generally used to measure residual oil saturation (Sor) or remaining oil saturation (ROS) in the near wellbore region via a single well chemical tracer test (SWCTT) or in an inter-well region via a partitioning inter-well tracer test (PITT). There is a limited repertoire of nonradioactive and environmentally friendly inter-well partitioning tracers for measuring ROS. A new class of environmentally friendly partitioning tracers was field tested, in a giant carbonate reservoir undergoing peripheral waterflood, for measuring ROS in inter-well regions in a depleted area.
The new partitioning tracers were qualified via laboratory experiments and are deemed to be very stable at reservoir conditions (213°F and a salinity range of 60-200 kppm). The field pilot was conducted concurrently with a set of non-partitioning inter-well chemical tracer test (IWCTT) to determine reservoir connectivity, water breakthrough times, and injector-to-producer pair communication in an area selected for an IOR/EOR field pilot. An elaborate sampling and analysis program was carried out over a period of 30 months.
This paper reviews the complete design and implementation of the test, operational issues, and the analyses and interpretation of the results. The breakthrough times of the passive and partitioning tracers are reported, and inter-well connectivity between the paired and cross-paired injectors and producers are analyzed. The ROS measured by a majority of the novel tracers is comparable to the saturations obtained via SWCTT, core and log derived saturations.
The combination of conventional IWCTT and the novel partitioning tracers via PITT has been very useful in analyzing well interconnectivity, understanding the reservoir dynamics and quantifying remaining oil saturation distribution in the reservoir. This has led to better reservoir description and an improved dynamic simulation model.